
M. Sievert 1 / 18TMD’s at High Density:   Quasi-Classical Approximation

TMD’s at High Density:
Quasi-Classical Approximation

Matthew D. Sievert

with Yuri Kovchegov

EIC Users’ Group Meeting

Friday Jan. 8, 2016

Part 1 of 2

1505 . 01176
1310 . 5028



M. Sievert 2 / 18TMD’s at High Density:   Quasi-Classical Approximation

Overview
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High-Density Gluon Fields:
         Intrinsic Hard Scale     Qs

• Hard scale       leads to factorization of the TMD’s themselves.Qs

• Calculable structure from first-principles QCD
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Quark Anatomy of a Spin-1/2 Hadron
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Quark Anatomy of a Spin-1/2 Hadron
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Quark Anatomy of a Spin-1/2 Hadron
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• Bilocal quark fields, connected by a 
staple-shaped gauge link.
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Quark Anatomy of a Spin-1/2 Hadron
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• Bilocal quark fields, connected by a 
staple-shaped gauge link.

• Gauge fields describe physical 
distortion of quark momentum.
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Gauge Fields:  Dilute vs. Dense Systems
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Gauge Fields:  Dilute vs. Dense Systems
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• Produced quark and hadron 
remnants are color-correlated.
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Gauge Fields:  Dilute vs. Dense Systems
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Gauge Fields:  Dilute vs. Dense Systems
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• Produced quark and hadron 
remnants are color-correlated.

Dilute Systems:  Lensing

• FSI are attractive, deflecting the 
observed quark toward remnants.

Dense Systems:  Broadening

• High density screens the net charge.

• Rescattering occurs on the 
random local charge density.

Random FSI
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• FSI are random, broadening the 

quark momentum isotropically.
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High Density:  The Quasi-Classical Limit

• At high density and weak coupling, 
multiple independent scattering 
occurs on the local charge density.

Nucleus: A � 1 Proton: ⇢ � 1
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High Density:  The Quasi-Classical Limit

• At high density and weak coupling, 
multiple independent scattering 
occurs on the local charge density.

• Resumming the high-density effects 
leads to scattering in a classical 
background field.
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High Density:  The Quasi-Classical Limit
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• At high density and weak coupling, 
multiple independent scattering 
occurs on the local charge density.

• Resumming the high-density effects 
leads to scattering in a classical 
background field.
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• High charge density defines a hard 
momentum scale      which dynamically 
screens the IR gluon field.
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TMD’s in the High-Density Limit
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TMD’s in the High-Density Limit
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TMD’s in the High-Density Limit
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TMD’s in the High-Density Limit
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TMD’s in the High-Density Limit
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Leading order in A1/3
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Quasi-Classical Factorization
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Quasi-Classical Factorization
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Quasi-Classical Factorization
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Spin Structure of an Unpolarized Nucleus
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• Consider for simplicity an unpolarized nucleus.
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Spin Structure of an Unpolarized Nucleus

• Consider for simplicity an unpolarized nucleus.
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Spin Structure of an Unpolarized Nucleus
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Spin Structure of an Unpolarized Nucleus
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• Consider for simplicity an unpolarized nucleus.

• The spin of the nucleons is described by the 2 x 2 density matrix W�0�
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• Generalize to covariant spin vector by boosting from the rest frame.

• The nucleons can have any of 4 polarizations: unpolarized, longitudinal, 
and transverse (x and y)
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Symmetries of the Nuclear Wave Function

• Since the Wigner distribution is built only from the nuclear wave 
functions (no gauge link), it has a high degree of symmetry:
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• Independent of the collision axis (direction of gauge link)
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Symmetries of the Nuclear Wave Function
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functions (no gauge link), it has a high degree of symmetry:

• Discrete symmetries:  P and T

• In the nuclear rest frame (assuming non-relativistic nucleon motion)

W�0�(~̄p,~b) =
1

2(2⇡)3mN

Z
d3(p� p0)e+i(~p�~p 0)·~b N

� (~p 2) N⇤
�0 (~p 02)

W�0�(p̄, b) =
1

2(2⇡)3

Z
d2+(p�p0)p

p+p0+
e�i(p�p0)·b N

� (p) N⇤
�0 (p0)

• Independent of the collision axis (direction of gauge link)



M. Sievert 9 / 18TMD’s at High Density:   Quasi-Classical Approximation

Symmetries of the Nuclear Wave Function
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Symmetries of the Nuclear Wave Function

• Since the Wigner distribution is built only from the nuclear wave 
functions (no gauge link), it has a high degree of symmetry:
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Proton:  Relativistically moving partons....   
...Lorentz-Invariance Relations??

D. Pitonyak?
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Parameterization of the Wigner Distribution

W (~p,~b, ~S) = Wunp[~p
2,~b 2, (~p ·~b)2] + ~S · (~b⇥ ~p)WOAM [~p 2,~b 2, (~p ·~b)2]

W (~p,~b, ~S) = Wunp[~p
2,~b 2, (~p ·~b)2] + ~S · (~b⇥ ~p)WOAM [~p 2,~b 2, (~p ·~b)2]

• Imposing P,  T,  and 3D rotation symmetry:

~L · ~S Spin-Orbit Coupling!
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Parameterization of the Wigner Distribution
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Parameterization of the Wigner Distribution
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• The maximum spin-orbit structure of the unpolarized nucleus is

Depth Dependence!
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TMD’s of an Unpolarized Nucleus

[ Γ ]

U U U U U U

λ λ′ U U T T
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Wunp : U ! U WOAM : (~L · ~S) U ! T

• For an unpolarized nucleus, two channels survive:

• Unpolarized nucleons:  trivial channel

• Transversely-polarized nucleons:  OAM channel



M. Sievert 11 / 18TMD’s at High Density:   Quasi-Classical Approximation

TMD’s of an Unpolarized Nucleus
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• For an unpolarized nucleus, two channels survive:

• Unpolarized nucleons:  trivial channel

• Transversely-polarized nucleons:  OAM channel

• An unpolarized nucleus has 2 leading-twist TMD’s:
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TMD’s of an Unpolarized Nucleus
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• For an unpolarized nucleus, two channels survive:

• Unpolarized nucleons:  trivial channel

• Transversely-polarized nucleons:  OAM channel

• An unpolarized nucleus has 2 leading-twist TMD’s:

Unpolarized quarks, azimuthally symmetric
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TMD’s of an Unpolarized Nucleus
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• For an unpolarized nucleus, two channels survive:

• Unpolarized nucleons:  trivial channel

• Transversely-polarized nucleons:  OAM channel

• An unpolarized nucleus has 2 leading-twist TMD’s:

Unpolarized quarks, azimuthally symmetric

Boer-Mulders Distribution:  Transversely polarized quarks, azimuthally antisymmetric
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Unpolarized Channel:
• Trivial density distribution + momentum broadening

fN
1 ! fA

1



M. Sievert 12 / 18TMD’s at High Density:   Quasi-Classical Approximation

Unpolarized Quark Distribution fA
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OAM Channel:

• “Dipole modulation”: Sivers function + momentum broadening

Unpolarized Channel:
• Trivial density distribution + momentum broadening
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Boer-Mulders Distribution h?A
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Boer-Mulders Distribution h?A
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Boer-Mulders Distribution h?A
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Unpolarized Channel:
• Trivial density distribution + momentum broadening

OAM Channel:

• “Dipole modulation”:  Transversity + broadening
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Boer-Mulders Distribution h?A
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Unpolarized Channel:
• Trivial density distribution + momentum broadening

OAM Channel:

• “Dipole modulation”:  Transversity + broadening
• “Quadrupole modulation”: Pretzelosity + broadening
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TMD Mixing
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TMD Mixing
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TMD Mixing

TMD 
Mixing

Spin-Orbit Coupling

WOAM

Momentum Broadening
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Mixing occurs between the 
PT-even and PT-odd sectors: f?N
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Multiple rescattering is essential to break front / back symmetry

•      dependence provides a PT-reversing factorbz
• OAM is not enough:  mixing vanishes without rescattering.
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Implications for an EIC

(1.) Deviation from 
simple broadening?

Presence 
of OAM!fA
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(2.) If the nucleonic 
TMD’s are known...

...and the nuclear 
TMD’s are measured...

...can directly 
extract OAM
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Implications for an EIC

(1.) Deviation from 
simple broadening?

Presence 
of OAM!fA

1 , fN
1

(2.) If the nucleonic 
TMD’s are known...

...and the nuclear 
TMD’s are measured...

...can directly 
extract OAM

fN
1 f?N

1TfA
1 ⇠ fN

1 ⌦Wunp + fA
1 ⌦WOAM

fA
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1 ⌦Wunp + fA
1 ⌦WOAM
WOAM $ ~L · ~S

(3.) This provides a prediction for additional mixing in other sectors!
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Outlook

• TMD mixing is a generic consequence of both spin-orbit coupling and 
high-density rescattering.

• Formalism is well-suited to modeling:

• Choose a form for W (~p,~b, ~S) determines mixing fractions.

• Use data or simple models for the nucleonic TMD’s.

• Determines the functional form of the nuclear TMD’s.

Q2

• Ingredients for a systematic global fit:

• Extensive measurements of the nucleonic TMD’s.

• Quantum evolution corrections

• Large-x       evolution (CSS)
• Small-x evolution: polarized and unpolarized.

Part II
4:24 pm, “Collective 
Behavior of Partons” 
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Summary

p
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The gauge link which is essential for TMD 
structure represents very different physics 
at high density.

High-density effects can be re-summed, 
leading to a quasi-classical factorization of 
nuclear TMD’s.

Spin-orbit coupling, together with multiple 
rescattering, leads to rich TMD mixing 
with predictive power.


